INTEGRAL TERTENTU BERSAMA SIFAT-SIFATNYA

GAVIN ALGHIFARI VIRYAN
(14) 
XI IPS 3

INTEGRAL TERTENTU BERSAMA SIFAT-SIFATNYA


Pengertian Integral

\int kx^n \, dx = \frac{k}{n+1} x^{n+1 }+ C

Keterangan

k : koefisien
x : variabel
n : pangkat/derajat dari variabel
C : konstanta

Pengertian Integral secara sederhana yaitu invers (kebalikan) dari suatu turunan. Penjebaran lebih luasnya adalah sebuah konsep bentuk penjumlahan berkesinambungan dan bersama dengan inversnya.

Ide integral sendiri muncul ketika matematikawan harus berpikir bagaimana menyelesaikan masalah yang berkebalikan dengan solusi diferensiasi.

Integral Tentu

Jika fungsi f terdefinisi pada interval [a,b] maka \int_a^b f(x) \, dx disebut integral tertentu fungsi f dar a ke b. Dimana f(x) disebut integran, a disebut batas bawah, dan b disebut batas atas.

Integral Tentu ini memiliki perbedaan yaitu sudah memiliki nilai tertentu karena sudah ditentukan batasanya.

Teorema dasar kalkulus untuk integral tertentu dinyatak sebagai berikut.

Rumus

Berikut ini rumus Integral Tentu

\int_{x=a}^{x=b} f(x) dx = \int F(b) - \int F(a) dx

Keterangan

f(x) = persamaan kurva
C = konstanta
F(b), F(a) : nilai integral untuk x = b dan  x = a

Sifat

Gunakanlah sifat dibawah ini untuk mempermudah pengerjaan soal nantinya ya.

\int_a^a f(x) \, dx = 0

\int_a^b f(x) \, dx = - \int_b^a f(x) \, dx

\int_a^b k f(x) \, dx = k \int_a^b f(x) dx

\int_a^b (f(x) + g(x)) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx

\int_a^b (f(x) - g(x)) \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx

\int_a^c f(x) \, dx = \int_a^b f(x) + \int_b^c f(x)

Mencari nilai integral

Dalam menncari suatu nilai integral. Terdapat beberapa cara untuk menyelesaikannya, diantaranya dengan Subtitusi, Eksponensial, Parisal, dan Pecahan.

Substitusi

Beberapa kasus dalam integral dapat kita selesaikan apabila terdapat perkalian fungsi dengan salah satu fungsi merupakan turunan fungsi yang lain

Contoh Soal

Perhatian contoh soal dibawah ini. Bagaimana kita menyelesaikan suatu fungsi menggunakan metode subtitusi

\int 4x^3(x^4-1)^4 \, dx = \int u^4 \, du
= \frac{1}{5}u^5
Karena u=x^4-1
\frac{1}{5}^5+C=\frac{1}{5}(x^4-1)^5+C
Jadi,
\int 4x^3(x^4-1)^4 \, dx =\frac{1}{5}(x^4-1)^5+C

Soal 1
Hitunglah hasil dari integral tentu berikut ini
Jawab:
Mathematics
Soal 2
Tentukan hasil integral dari fungsi berikut:
Jawab:









Soal 3
Tentukan hasil integral dari fungsi berikut:



Jawab:







Soal 4
Tentukan hasil integral dari fungsi berikut ini:




Jawab:

Soal 5
Tentukan hasil dari integral pada fungsi berikut ini.
Jawab:
Mathematics
Soal 6
Tentukan hasil dari integral berikut.




Jawab:
Mathematics
sekian blog saya terimakasih


Daftar Pustaka : 

https://www.edura.id/blog/matematika/integral/
https://www.sheetmath.com/2018/06/integral-tentu-contoh-soal-dan-pembahasan.html

Komentar

Postingan populer dari blog ini

NILAI STASIONER, FUNGSI NAIK DAN FUNGSI TURUN

soal pat matematika